6,453 research outputs found

    Teleportation-induced entanglement of two nanomechanical oscillators coupled to a topological superconductor

    Full text link
    A one-dimensional topological superconductor features a single fermionic zero mode that is delocalized over two Majorana bound states located at the ends of the system. We study a pair of spatially separated nanomechanical oscillators tunnel-coupled to these Majorana modes. Most interestingly, we demonstrate that the combination of electron-phonon coupling and a finite charging energy on the mesoscopic topological superconductor can lead to an effective superexchange between the oscillators via the non-local fermionic zero mode. We further show that this teleportation mechanism leads to entanglement of the two oscillators over distances that can significantly exceed the coherence length of the superconductor.Comment: 6 page

    Quantum-coherent phase oscillations in synchronization

    Full text link
    Recently, several studies have investigated synchronization in quantum-mechanical limit-cycle oscillators. However, the quantum nature of these systems remained partially hidden, since the dynamics of the oscillator's phase was overdamped and therefore incoherent. We show that there exist regimes of underdamped and even quantum-coherent phase motion, opening up new possibilities to study quantum synchronization dynamics. To this end, we investigate the Van der Pol oscillator (a paradigm for a self-oscillating system) synchronized to an external drive. We derive an effective quantum model which fully describes the regime of underdamped phase motion and additionally allows us to identify the quality of quantum coherence. Finally, we identify quantum limit cycles of the phase itself.Comment: 6 pages + Supplemental Materia

    Initial data for rotating cosmologies

    Full text link
    We revisit the construction of maximal initial data on compact manifolds in vacuum with positive cosmological constant via the conformal method. We discuss, extend and apply recent results of Hebey et al. [19] and Premoselli [31] which yield existence, non-existence, (non-)uniqueness and (linearisation-) stability of solutions of the Lichnerowicz equation, depending on its coefficients. We then focus on so-called (t,φ)(t,\varphi)-symmetric data as "seed manifolds", and in particular on Bowen-York data on the round hypertorus S2×S\mathbb{S}^2 \times \mathbb{S} (a slice of Nariai) and on Kerr-deSitter. In the former case, we clarify the bifurcation structure of the axially symmetric solutions of the Lichnerowicz equation in terms of the angular momentum as bifurcation parameter, using a combination of analytical and numerical techniques. As to the latter example, we show how dynamical data can be constructed in a natural way via conformal rescalings of Kerr-deSitter data.Comment: 22p; corrects typos of version 3, and of published versio

    Treefall Gaps and the Maintenance of Species Diversity in a Tropical Forest

    Get PDF
    The maintenance of species diversity by treefall gaps is a long‐standing paradigm in forest ecology. Gaps are presumed to provide an environment in which tree species of differing competitive abilities partition heterogeneous resources. The empirical evidence to support this paradigm, however, remains scarce, and some recent studies even suggest that gaps do not maintain the diversity of shade‐tolerant species. Although there is evidence that gaps maintain the diversity of pioneer trees, most of this evidence comes from studies that did not make comparisons between gaps and intact forest sites (controls). Further, nearly all studies on the maintenance of diversity by gaps have ignored lianas, an important component of both old‐world and neotropical forests. We tested the hypothesis that treefall gaps maintain shade‐tolerant tree, pioneer tree, and liana species diversity in an old‐growth forest on Barro Colorado Island (BCI), Panama. We compared the density and species richness of these guilds between paired gap and non‐gap sites on both a per‐area and a per‐individual (per capita) basis. We found no difference in shade‐tolerant tree density and species richness between the gap and non‐gap sites. Both pioneer tree and liana density and species richness, however, were significantly higher in the gap than in the non‐gap sites on both a per‐area and a per‐individual basis. These results suggest that gaps maintain liana species diversity and that this effect is not merely a consequence of increased density. Furthermore, our data confirm the long‐held belief that gaps maintain pioneer tree species diversity. Because lianas and pioneer trees combined account for ∌43% of the woody plant species on BCI, and in other forests, our results are likely to be broadly applicable and suggest that gaps play a strong role in the maintenance of woody species diversity

    Dynamically Generated Synthetic Electric Fields for Photons

    Get PDF
    Static synthetic magnetic fields give rise to phenomena including the Lorentz force and the quantum Hall effect even for neutral particles, and they have by now been implemented in a variety of physical systems. Moving towards fully dynamical synthetic gauge fields allows, in addition, for backaction of the particles' motion onto the field. If this results in a time-dependent vector potential, conventional electromagnetism predicts the generation of an electric field. Here, we show how synthetic electric fields for photons arise self-consistently due to the nonlinear dynamics in a driven system. Our analysis is based on optomechanical arrays, where dynamical gauge fields arise naturally from phonon-assisted photon tunneling. We study open, one-dimensional arrays, where synthetic magnetic fields are absent. However, we show that synthetic electric fields can be generated dynamically, which, importantly, suppress photon transport in the array. The generation of these fields depends on the direction of photon propagation, leading to a novel mechanism for a photon diode, inducing nonlinear nonreciprocal transport via dynamical synthetic gauge fields.Comment: 12 pages, 5 figures; Fig. 2 and Fig. 3 modified in v2; paragraph "The basic physics behind our results" added in v2; revised introduction including new references in v3; Fig. 1 modified in v3; extended supplementary material in v

    Have we forgotten the forest because of the trees?

    Get PDF
    Recently, Brokaw and Busing argued that there is limited evidence for niche partitioning of tree species within forest gaps1. Consequently, gaps appear to play a relatively minor role in the maintenance of tree species diversity in forests via traditional resource partitioning. This conclusion is strongly supported by the existing empirical evidence, particularly for shade-tolerant tree species. Most studies of gaps, however, have failed to take into account plant groups other than trees2-4. Gaps may be a necessary habitat for the persistence of a large proportion of the vascular plant species other than shade-tolerant trees; specifically, pioneer trees, lianas, herbs, shrubs, and herbaceous vines2-8. For example, in a study on Barro Colorado Island (BCI), Panama, gaps had higher liana and pioneer tree diversity on both a per area and per stem basis (thereby removing the effect of density) compared to the surrounding forest2,3. These two plant groups alone account for approximately 43% of the woody species in this tropical forest2. There is also evidence that many forest herbs are gap dependent5,6. The role of gaps in the maintenance of shrubs is less clear, although there is some evidence that gaps promote shrub growth and reproduction7,8. Overall, when the major vascular plant groups are considered, as much as 65% of the flora of BCI may be gap dependent (Table 1). The specific mechanism that leads to the higher diversity of these groups in gaps remains unknown. Nonetheless, because these vascular plant groups represent a majority of the plant species in tropical forests worldwide4,9, gaps may often play a strong role in the maintenance of species diversity. Brokaw and Busing also argued that gaps might maintain diversity via the density effect10; Specifically, that gaps will have a higher diversity of trees solely because they have a higher density of trees compared to the surrounding forest. Tree density in gaps, however, declines (thins) with age, and thus the density effect could maintain diversity in the mature forest primarily in two ways. First, if individuals in gaps reach reproductive age prior to thinning then they could potentially colonize new gaps. Data are lacking, however, on whether trees reach reproductive age sooner (i.e., smaller size or age class) in gaps than in non-gap sites. Second, there must be niche partitioning. Without niche partitioning, thinning of individuals occurs randomly, and the initial increase in diversity would be merely a transitory result of the short-term increase in plant density2,11. Consequently, given the scanty evidence for niche partitioning and accelerated reproduction in gaps, the evidence for the density effect as a viable mechanism to explain the maintenance of diversity in forests is equivocal at best. We argue that papers sounding the death knell for the role of gaps in the maintenance of diversity in forests (e.g., Ref. 11) may be premature. The focus of most previous research on the ability of tree species to partition resources in gaps may have caused us to overlook the importance of gaps for many other groups of vascular plants (Table 1). Future research is necessary to quantify further the proportion of species in these and other groups (e.g., epiphytes) that require gaps for persistence in the community

    Failure of protection of Majorana based qubits against decoherence

    Full text link
    Qubit realizations based on Majorana bound states have been considered promising candidates for quantum information processing which is inherently inert to decoherence. We put the underlying general arguments leading to this conjecture to the test from an open quantum system perspective. It turns out that, from a fundamental point of view, the Majorana qubit is as susceptible to decoherence as any local paradigm of a qubit.Comment: Published versio
    • 

    corecore